BSoD/Introduction to Rigging

by Robert Christian (wavez)

Table of Contents

THE ODJECTIVE. ...eeeiieiiieeiie ettt ettt ettt et e bt e e ettt e bt e e abe et eeeabeenseesabeeseaenseeseesnsaesaeanseenssesnseensnaans 6
Introduction to Character Rig DeSIZN........cccuiieiiiiiieiiieciie ettt es 6
THe Barly DIaYS......cieiieiieeieeie ettt ettt et et e bt e e sbeeseeeaba e bt e eabeeseesnseeseans 6
HOW t0 MAKE A IMOVE.....uuiiieiiieeiiee ettt ettt e et e et e e st e e sataeessteeesseeensseeensseessssaesnseeensseens 6
A SKEleton Was BOT......cc.uiiiiiiiiiiieie ettt ettt ettt et e ebe e s e saeenseeenae e 7
Back t0 KINEMALICS.uiiiiiieiiiieciie ettt et e et e e et e e et eesaaaeesnaae e sbaeessseeensseesnsseeensseesnsenas 8
SUMIMATY ...ttt ettt e et e e ettt e et e e e s st e e e s abeeesabeeenbeeenbeesnnneesnneeesnseeennnes 9

THE TOOIS...eieeiiieeee ettt et e ettt e et e e et eesteeesaseeessteeessseeenssaeanssaeansseessssaesssaeensseeenns 11
the Armature and 1tS FEAtUIES........c.eeiiiiiiiiiieiieeiceee ettt et saee e ens 11
the Armature and its WOrk MOES........c.ueiiiiiiiiiiiciie et aae e e ree e s 11

ATmMAtUre Edit MOGE......cooiiiiiiiiieie ettt sttt st esaae e e snaeenreas 11
ATmMAture ODJECT MOAE.....c.uviiiiiieeiiie et e et e et e e et e e eteeesaeeeesseeessaeeenns 12
ATMATUTE POSE IMOAE.c.eiieiiiiiiieiiecie ettt ettt et e e e st e sabeeseesnbeesea e 13
Building an Armature/Rig: Construction TeChniques..........ccceeevvieriiiieriiieeiieecieeeee e 13
Placing @ NEW BOME........cocoiiiiiiiiiieiieeie ettt ettt ettt e et e beesaeeeabeesaaeenseennnas 13
RESIZING @ BOMNEC......ooiiiiieiieeee ettt ettt et e e st e e s nae e e s ssaeensseeessaeenneas 13
Pointing One Bone at Another BONe...........ccciiiiiiiiiiiiiiiiciieecee e 14
Armatures and BUtONS........ccuviiiiiiiiiiiiecs ettt e e e e e naeeeens 14
The Armature Panel............ccoocuiiiiiiiiiieeeee ettt st ettt e beesebeeeeas 14
The Armature Bones Panel...........cccoioiiiiiiiiiiiicccece ettt 15
The Armature DiSplay MOAES........coouieiiiiiiiiiieiieeie ettt ettt saeeebee e 16
AV (0 1T 1 TS (T o SRR 16
Armatures and HOtKEYS......oioiiiiiiiiieie ettt ettt ettt e e e e eneees 17

Constraints and AXIS LOCKS.iiiuiiiiiiiiiiie ettt e e e e sae e e aaeeesaeeeaaeesssaeessseeenns 18
Introduction To Blender CONSIIAINtS..........cccueeruieriieriienieeiieeie ettt ettt sieeeee e e ebeeseeeeneeas 18
Universal Constraint FEAtUIES.c.c.uiiiiiiiiiie ettt e e e et eeeaeeeaaeeensaeesnsee s 18
(07070} T 1o 1 o) 4 OO OO USRS PUS 19
L0100 0 0] 7213 o) s USSR 20
COPY SCALC....niiiiieiieee ettt ettt et et e et e et e bt e ae e e b e e tae e bt e bt e enbeeteeenteeneaans 21
2T Sl PSSR 21
LOCKEA TTACK. ...e ettt ettt ettt e e et e e b e e s saeenbeesseesnbeensneenseans 22
2 1010 PSRRI 22
FOLLOW Path.....c..oiiiiiieee ettt ettt ettt et e e e e sseeebeesaeeenseeens 23
N8 U101 0 o TSRS 24
T SOIVET ..ttt ettt ettt ettt et e et eesb e e ste et e eateenbe e steeabe e neeenbeenseeesaenneeen 24
Yo7 5[0) s DO RS SS 25
INULL ettt et et e et e s e et e e e ab e e st e e e st e e bt e en b e ebeeenb e e seeenbeenbeeenbeeseeenteenean 25

Preface: Rigging in BIENAer..........oooviiiiiiieiie et et aee e e e s 26
SOME GUIACIINES.eeeitieiiieiie ettt et e et e bt e e bt e et e eabeesteeeaseesseeenseensaesnseesssesnsaenseaans 26

Mesh to Armature ASSIZNIMENL...........eeeiuiieeiieeeiieeeitreeeteeesteeesaeeessreeessseeessseesssseesnsseessseeesssees 26
The COG and the Armature CeNLET..........cccuierieriieriieeiieiie et eieeeieeitesreesreesieeeseesseesseesseeens 26
o F 1§ N T T PSS 28
When In Doubt, Snap To Grid!......c.cooiiiiiiiiiieiee et 28
LAY USAZE....eeiiiiiiiieeeeitiee ettt e e ettt e ettt e e e ata e e e e sabteeeesastaeeseansseeeeanssseaeeanssneesannn 28
The IK and Constraint HOtKEYS........c.coocuiiiiiiiiiiiieiiecceeee ettt 28
NT0) 10 o 25 q o] F2 1 o P15 101 - F PSSR 29
Understanding HieTarChi@s............cceiiiiiiiiiiiiiienieeitee ettt ettt eseaeeneees 29
TerMINOLOZY OVEIVIEW...c..viieeiiieeciiieeeiieeetee ettt e ertteesteeesteeessseeessseeassseeesseeassseessseesssseesnseeensses 37

The Design-and-Test TWO-SteP.......ccciiriiriieiierieerte ettt ettt st e seaeeseesaaeens 38

SOME BEGINNET RIZS.....uiiiiiiiieiiieciieeee ettt e et e et e e et e e etaeeestaeeenseeeensaeeenseeennseeas 39
The Squash n' Stretch Ball..........c.ooiiiiiiiii et 39
Some EXtra INT0....coouiiiiii e 40

The Dancing Palm TTEe..........coiuiiiiiiiieiiieiieee ettt ettt et et tee st e e beesabeensaeenseens 40
Some EXtra INT0....coouiiiiiiie e e 42
Expanding Punching Glove ATM...........cooiuiiiiiiiiiiiiiciiee ettt e 42
Understanding Target TraCKINg........c.ceecuiiiiiiieiiieciieecee ettt esee e e e saeeeae e e aaeeeeaeeesaeeennes 43
TTACK TO CONSIIAINL. c..eeuteiieiieiieeiteste ettt ettt sttt et ettt et saeesae et e ebeesae e 43
TR COMSIIAINT. ...ttt ettt et e e et e bt e e bt e sbte et e e sbeeeabeesbeeeabeenbeeenneennees 44
Making the COMPATISON.......eiiiuiiriieeiieriie et eette et et e et et e et esteesteesaeeeaseessaeenseesseesnseenseesnseenseeenne 47

W 0 00 AT e B T ¥y s DO SRRR 50
Lets BUILd Tth..c.eeoeeee ettt sttt et 51
EIbow Direction COontrol..........cooiiiiiiiiiiiieiieeiee ettt e 51
FIinding SOmME DIr€CtiON.ccuiiiiiiiiieiieiie ettt sttt et e st eebeeseaeeneeas 52

But HOW DO T ChOOSE! 7.ttt ettt e 52
TK/FK BIENAING. ...ttt ettt ettt et s e et e st e s be e et e esbeessaeensaenseesnseenseeenseas 57
Hand RIZ DESIZN....ccuuiiiiiiieciieecieeeee ettt et e e et e e eaeeesaeeessaeeessaeesssaeessseeennseeenses 57
L RIS, ettt ettt ettt et e ettt e et e et e et e e bt e at e et e e eaae e bt e enteebeenneeenneennes 57
The FUNKY ChiCKeN.....cccuviiiiiiiceeeeeee ettt et e e e et e e e aae e ensaeennsee s 58
Let's BUILA Tt...coueeieeeeee ettt ettt st 59
LoCKING ThINGS UP...iiiiiiiiiiie ettt et e e e et eestaeeesaeeessaeesnseeessseeensseennns 60

U S, ottt ettt ettt ettt e et e et at e e bt e e e bt e e e bt e e e bt e e e bt e e eabeeenabeeenteeenbeeeeanes 60

The Not-So-Funky NOn-CRICKEN.........ccccuiiiiiiiiiiieiee et 61
FOOt RIG DIESIZN..cuiiiiiiiiiieiieie ettt ettt et e st e et e s et e e ateesabeesbeeesbeenseesnseenseesnseenses 64
BUilding RIZ L.ttt e et e e st e e st e e et e e e ssbeeesaeeensaeeensaeeensaeennseenn 64
LoCKINg ThinGSs UP....cocuiieiiiiiieiieiiieieeee ettt ettt ettt et e seeeste et eesbeeseaeenseesseeenseensnesnseas 65
BUilding RIZ 2.....eeieoeeeeeeee ettt ettt et e et e e st e e st eestbee e sbaeentaeeaaeeennaeennree s 66
SPINE RIZ DIESIGN....ccutiiiiiieiiieeiiteie ettt ettt et e st e et e st e e bt e s aeeesbe e seeenseessaesnseeseesnseenseesnsean 67
The B-BONE SPINE......ccoiiiiiiiieeiiieete ettt et e et e e et e e et e e eaaeesnsaeeessaeesnsaeeenseeennseens 68
This Rig i REVIEW....eiiiiiiiiiiiieiie ettt ettt ettt s e et e st eeseesnseenseeees 70

The Propagating RoOtations SPINE..........ceeruiieiiiieiiiieeiiie e eteeeiteeeiee e eee s e e sree e saveeesnaeesnnseeens 71
This Rig i REVIEW......iiiiiiiiiiiieie ettt ettt ettt ettt et e s eeseesnseesee e 72

The Bend-O-MatiC SPINE.......ccueeiivieiiiieeiiiieeiieeeieeesteeesieeesteeestteeesaeessaeessseeessseeessseeessseesnsseesnnns 73
Let's BUILA Tt..coneiiiieece ettt ettt st et 74

This RiZ 1N REVIEW.....eiiiiiiiiiie ettt ettt e e s e e e e e st e e esaeeenseeenneas 78

The Bones-0n-CUIVE SPINE......cccuiiiiiiiieiiieiieeiieeiteettesteeieesiteeteeseeeteesteeseesssesseessseeseessneensens 79
Let's BUILA Tt...coneeeeeeee ettt et ettt et st e b et e eneenees 79

This Rig i REVIEW......iiiiiiiiiiiieie ettt ettt ettt ettt et e s eeseesnseesee e 82

The Linear Curve TracKing SPINE.........ceeciieeiiiiieiiieeiieeeieeesieeesreeeseteeesereeesaeessaeessneesseeesseeenns 83
Let's BUILA Tt...coneeiieeeee ettt ettt sttt s 83

This RiZ 1N REVIEW.....eiiiiiiiiiie ettt ettt e e s e e e e e st e e esaeeenseeenneas 88
Spine Rigs vS CUrve DefOrm.......ccocuiiiiiiiiiiiiicieeece ettt et 88
FaCE RIG DESIZN..cccuiiiiiiiiiiiie ettt ettt e e e e st e e s tae e s saaeessaeeesseeenssaeensseesnnseennnes 90
This Rig IN REVIEWcoeiiiiiiiiiiee ettt ettt ettt e st eeaaeenbeessaesaseas 90
175 [(13 SO OO OO STUPROT SRR 91
This Rig IN REVIEW ..ottt ettt ettt e st esaaeenbeessaeenseas 91
the Rig and the MESh..........coooiiiiieceee et ee e st e e et e e aee e ssbeeenseeenes 91

Pag. 4

The Objective

Introduction to Character Rig Design

In this section I'm going to show how character animation evolved from its earliest beginnings, into
what it is today. This will help give you an understanding of the universal concepts and techniques
of character control that are used today in 3D digital character animation. Then we'll delve into the
more specific details related to the implementation of these techniques in Blender.

The Early Days

"Money for Nothing"

The first 3D characters started appearing in film between 1980 and 1985. In 1984, the rock group
Dire Straits released a music video for their song, "Money for Nothing", which featured a pair of
low-detail polygonal characters.

How to Make A Move

{13 Forearm

v View Select Object | BA0bj:

There was probably no such thing as a skeleton object in 3D applications back then, so how would
someone animate a character if it has no skeleton? The solution was to use a series of multiple
objects to approximate the shape of the character, and place them into a hierarchy(link).

This created a fairly straight-forward animation technique, they simply animated the rotation of
each of these different objects. You can try this for yourself by creating a hierarchy of objects and
then rotating them one at a time. This approach became known as Forward Kinematics, or FK.

Pag. 5

A Skeleton Was Born

< View Select Object [t

FK is a good process for generating movement, but we can't keep using multiple objects for all the
parts of our characters because it looks fake. If we want it to look like something organic, the whole
character needs to consist of only one mesh. There's no breaks in the skin around a human elbow,
and so it should be with the mesh of a human CG character. So the skeleton object was created. It's
an object that can be rotated, translated, and scaled, just like most other types of 3D objects, but it's
special because we can use it to move the vertices of a mesh object. In Blender, this object is called
an Armature. Note that hooks(link) are also objects that can move the verts of mesh objects.

Back to Kinematics

There was still another issue to deal with though. Consider two examples; an arm and a leg. An arm
can be moving around in the air, but the leg needs to make contact with the ground. The foot needs
to be completely motionless (relative to the ground, not the body) or any chance at the appearence
of realistic movement is lost. If we want the character to move from standing to crouching, how do
we keep the foot in one place while the knee joint and the hip joint are both rotating?

_:__-_.Zf’f'i. Effector

xr

(5% Arm2 |K Effectar

E i = wiew sSelect P,

An IK effector in Motion

Pag. 6

The solution to this problem was to create a new method that implements a recursive process which
rotates the bones so that they reach toward a target. As long as the target is within range, the chain
of objects will rotate as needed in order to touch the target. This process is called Inverse
Kinematics, or IK.

When you work with FK, you rotate the character's joints yourself. When you work with IK, you
move a target, and the bones are made to touch the target, so the rotations are all done for you.
Sounds great, right? Who needs FK, right? Well, animators do, and the following image shows that
IK and FK have very different behaviors.

4|+ view select oOpject

FK vs IK

Both of these arms have two key frames(link here), but the one on the right is animated with IK,
and the one on the left with FK. For the arm on the right, this means that the IK effector has a key
frame starting position, and a key frame ending position. To Blender, this means the animator is
saying "go from point A, to point B", so obviously the effector is going to travel in a strait line. But
is that what we want? Maybe it is, or maybe it's not, it depends on the character. If this is the arm of
an olympic swimmer doing laps in a pool, then we probably want a movement more like what we
see with the arm on the left. But if this is the robotic arms of a CNC machine that is cutting a
perfectly straight line into a block of metal, then we probably want something like the motion of the
arm on the right. Often, however, we need both IK and FK on the same character, but at different
moments. Maybe our olympic swimmer is going to swim over to the steps, walk out of the pool and
open a sliding glass door, in which case his hand needs to sync up with the handle of the door as it
moves. We'll cover IK and FK blending later though.

Summary

Hopefully the information we've covered so far has helped you understand how character animation
evolved from what it was, into what it is now. Hopefully this has helped you see what the methods
and objectives are, and how the FK and IK techniques fit into the bigger picture that is character
animation.

As you progress further and further into the topic of character animation, you'll see the terms
"animation" and "rigging" thrown around a bit, but you might not completely understand the
meanings and differences of these two terms. "Animation" is a couple things. For one, it's the
specific act of simulating movement. On the other hand, basicly everything in film, TV, and games,
is done for the sole purpose of creating animation.

Often, when industry professionals are asked, "what do you do?", they will respond, "I'm a
computer animator". This doesn't have to mean that they actually do the animating, but instead

Pag. 7

means that they work for a company that produces animations. In this regard, all subjects of
computer graphics can be placed under the umbrella of computer animation.

This section talks specificly about the area in computer animation called "rigging". Rigging a
character is like designing the controls for a puppet. There are puppets that dangle from strings,
puppets that sit on hands, puppets that move with metal bars, and of course, all types of animatronic
robot puppets. Even in computer graphics, we still need tools to help us create motion. This is the
world of character rigging. Some of our tools are:

.-" hoh-Root Bone

‘? View Select F'usej

chain

A series of connected bones is called a "chain", and these are the terms we use to refer to the
elements in a chain.

« Object hierarchies
- Axis locks
« Degrees of freedom
+ Object constraints (and)
o Other types of object relationships

Just like real puppets, digital puppets need joints, and so we have skeleton-like, digital objects. We
arrange these objects into hierarchies so that when a character's neck moves, his head goes with it.
Or when the upperarm moves, the forearm is not left floating by itself, nor does it need to move on
it's own to keep up. Because we make it the child of the upperarm in a hierarchy, it simply stays
attached. And this goes for the upperarm as the child of the shoulder, and shoulder as the child of
the spine.

Sometimes we have an object that works as a control for parts of our character, but we want to limit
the ways it can be manipulated. For these situations, we have axis locks. This allows us to make
some bones unmoveable, unrotatable, or unscaleable. There are 3 axes for each type of
transformation, making 9 axes total, and we can lock as many or as few of these as we like to suit
our needs.

In some IK chains, we want to limit the range of motion for certain bones. One example would be
the wrist of a person, it should only rotate 180°. In Blender we can do this using DoF's, Degrees of
Freedom.

The single most used tool of a rig is the constraint. It allows us to define other types of relationships
that hierarchies can't give us. Besides constraints, we also have a few other special tools, such as
IPO drivers(link), pydrivers(link), and python scripts(link).

Pag. 8

The Tools

the Armature and its Features

{13 Cube

| v view select M,

In this image, the selected verts will belong to the bone they surround

In Blender, skeletons are known as Armature Objects. Armatures are actually nothing like real-life
skeletons. The best way to think of a bone in CG, is to imagine it as a center about which the verts
of a mesh can exist as children.

The Blender armature object is a container for sub-objects, called bones. We're going to tour
through all the features of the armature object, and you can try them as we go along. You can add
an armature the same way you add any other object in Blender, through the SPACE menu. Any
time you add an object to a scene, you should consider clearing it's rotation with ALT+R while in
object mode.

the Armature and its Work Modes

Armatures have an object mode and an edit mode, just like the Mesh Object(link), and you can
toggle these with TAB, just like a mesh object. The state that you see your armature in while in edit
mode is known as the Rest Position. Armatures are meant to be animated, so to fullfill this purpose,
they have yet another mode: Pose Mode. You can toggle pose mode by pressing CTRL+TAB.
Pose mode is different from edit mode in that you can change the selection to other objects outside
the armature without first leaving pose mode. If you do change selection, when you return to select
the armature, you will still be in pose mode. Bone selection is preserved when changing between
edit and pose mode. You are placed into edit mode when a new armature is added to a scene, just
like mesh, curve, and surface objects.

Armature Edit Mode

v view

Bones are manipulated as pairs of points while in edit mode

Pag. 9

Edit mode is where you add, remove, and place bones. In edit mode, bones are placed by moving
points. Each bone has two points, a root and a tip. A new armature object has one bone by default,
but more can be added via the SPACE menu, or you can select the tip of any existing bone and
extrude(link) a new one from it with the E key, or CTRL+LMB click (not drag, that would do
lasso select) in the 3D view. You can see the number of bones and bone points displayed in the top
header. Extruding creates a bone that is a child of the bone from which it was extruded, and gives
these two bones the special relationship of being connected. You can change this by toggling the
Con button in the Armature Bones buttons panel while you have the bone in question selected.

Armature Object Mode

v View Select Object [t

Bad things happen when an armature or it's mesh are transformed relative to each other

In object mode, an armature will behave just like any other singular 3D object (even though it
contains multiple bones, which are objects themselves). Armatures can be moved about, resized,
and rotated. It's good practice however, not to perform transformations on armatures. For armatures
to deform a mesh object properly, the location, orientation, and size of the mesh--relative to the
armature--must stay constant. The only way ensure this is to constrain the mesh object's location,
rotation, and size to the armature object. To make the mesh deformed by the armature, we have to
either make it a child of the armature, or use a modifier. Modifiers have more helpful features, so it
is the preferred method.

Pag. 10

Armature Pose Mode

Pose mode is the mode where posing and animating of the armature bones can be done. Bones are
technically sub-objects of the armature. The total number of bones, and number of selected bones is
displayed in the top header. Besides posing and animating, you can also create and manage
constraints for bones in pose mode. In edit mode, you define your armature's rest position. In pose
mode, when you clear all bones of transformations (ALT+R, ALT+S, ALT+G), the rest position is
what you should have, assuming you don't have any constraints preventing your bones from
returning to the rest position. You can also make objects outside the armature children of a bone, by
selecting the object with CTRL+LMB, and then parenting it to a bone with CTRL+P.

Building an Armature/Rig: Construction Techniques

Knowing how to add and move bones isn't everything you need to know to build an armature rig. A
lot of work with armatures is done with SHIFT+S snapping, and cursor-as-pivot operations. You

should understand the difference between using the Bounding Box Center as the pivot point (,),

and using the 3D Cursor as the pivot point (»). Throughout the rig tutorials in this section you will
be required to do a lot of different snapping and cursor-pivoting operations.

Placing a New Bone

Often a new bone needs to be added in the same
location as an existing root or tip point. To do this,
snap the cursor to the existing point and add a new
bone with the SPACE menu.

You can also place a new bone exactly halfway
between two other bones. To do this, select the root
points of two existing bones and snap the cursor to
them both. It will then be halfway between them, and
, you can then add the new bone.

There are two ways to resize a bone. The easy way is to select the root and tip
points, snap the cursor to the selection, and then snap the tip point to the cursor.
This makes the bone half as long as it was to begin with. In the tutorials, when
you read, "resize the bone to 50%", this is what you want to do. If you see
"resize to 25%", then just do this twice.

The other way is to snap the cursor to the root point, set the cursor as the pivot
point, and then scale the tip toward or away from the cursor. This method allows
you to make the bone any percentage of it's original size.

Pag. 11

Pointing One Bone at Another Bone

A lot of the rig designs require one bone to track (point at) another bone. This
means that the bone that does the tracking needs to be pointing exactly at the
target bone. To do this, you snap the cursor to the root points of both bones,
and then snap the tip of the tracking bone to the cursor.

v View 5

Armatures and Buttons

Many features for armatures and bones are accessable through the buttons window. Pictured below,
are two panels from the editing buttons (F9), the Armature panel and the Armature Bones panel.

The Armature Bones panel changes based on a number of factors which include:
« The armature's current mode
The bone or bones that are selected
The status of the selected bone as part of an IK chain or not.

Editing Options Selected Bones

| ®-dwis Mireor | ®-Ray | Auto Ik | EO:Eone < Dist: 0.75 » | Weight: 1.00
Display Options < Segm:l ¢ In:1.000 |« Ouot:1.000 »
N e | e e v e e e e | Hinge | Deform | Kut [OB:
Octahedron BEsyiles] E-Eore J Envelope ._ T T T T TTIHTTIT T T T
Draw Axes Drraw Mamnes Lock % Rot | Lock ¥ Rat | Lock Z Rot |
1 Ghiost: 0 k|4 Stefp: 1 k S §: 0.000 [Stiff ¥: 0.000 | Stiff Z: 0,000 |
PR Limit ¥ Lirnit Limit 2|
Vartex Gr.n.ups Envelopes Stretch: 0.000
Fiest Position Delay Deform

LF'aneIs e =@ TC|E ﬁl 1

These effect all bones of the armature

L ~ Panels |@ |E Jlfdfﬁ|ﬁ

These buttons effect the currently selected bones

The Armature Panel

Editing Options

+ X-Axis Mirror: Enables mirrored editing for all mirrored bones. Use SHIFT+E to make
mirrored extrusions, when X-Axis Mirror is active.

X-Ray: Causes the armature to be drawn in the scene last, making it visible through all
other objects, except for other objects that are also X-Ray active (see Draw Panel (E7)).

- Auto IK: This is a new feature and is still fairly undeveloped at this point. Automatic IK
allows you to pose an armature by clicking and draging on any bone. Auto IK generally
doesn't work with rigs, and should mostly be used as a posing tool for FK armatures.

« Ghost: Enables ghost drawing, which is visible if the bones are animated. The number here
is the number of ghost copies Blender will draw.

Step: The number here is the number of frames between ghost copies.

Pag. 12

Display Options

BoneLayers:- L e b T b1 1 These work in the same
manner as the world layer buttons. Each button represents a layer, and when active, that

layer is visible. Bone layers are a setting that is local to each armature.
Display Modes: m Stick | B-Bone | Envelope | Theee buitons st the
armature display mode (explained below).

Draw Axes: Enables axis drawing for all bones of the armature.
Draw Names: Enables drawing of bone names in the 3D view.

Deform Options:

Vertex Groups: Enables bones to deform a mesh via vertex groups.
Envelopes: Enables bones to deform a mesh via envelopes.

Rest Position: Forces the armature into rest position while in pose mode.
Delay Deform: Disables deformation of children mesh objects.

The Armature Bones Panel

Selected Bones:

OB: The name of the bone shows here. You can also use the Transform Properties panel in
the 3D view (N).

Dist: The envelope distance shows here. It is expressed in units from the surface of the bone
(in envelope mode) to the outside of the envelope field.

Weight: The weight that is used to calculate vertex influence amounts when using
envelopes.

Segm: The number of b-bone segments.

In: The blend-in value. Effects the shape of the b-bone bezier curve.

Out: The blend-out value. Effects the shape of the b-bone bezier curve.

Hinge: This option allows bones to defy the rules of the parent/child relationship. When
enabled, this feature causes bones to keep the appropriate location according to the parent's
coordinate system, but not size and rotation.

Deform: Enables bones to affect mesh vertices. Also includes bones for consideration
during automatic vertex group creation.

Mult: Causes vertex group weights to be multiplied by envelope weight. When enabled, a
weight of 0 assigned to some verts will cause them to be uneffected by the envelope.

OB: Specifies another object to be used as the visible bone geometry.

These buttons only appear for bones that are part of an /K chain:

Lock Axis Rot: Allows you to prevent the bone from rotating on a specified axis.

Stiff: Values for resistance to rotation.

Limit Axis: Gives access to DoF (Degrees of Freedom). Allows minimum and maximum
rotation values to be specified.

Stretch: Allows bones to scale bigger or smaller in response to IK effector movement.

Pag. 13

The Armature Display Modes

(i~ G aoe Timeline

Sant "L A rmatures have four different ~ Gl Add Timeline

methods of graphically representing [=
bones, called Display Modes. Each
display mode is only a different
method of representing an armature.
No matter which mode you use, no
changes are made to the bones or the
armature.

However, some display modes do
give you access to bone properties and
special visualizations that the other
display modes don't.

(left) This bones are actually identical,
just using different representations

(Do F only far 1K chains)

(right) Here you see three identical
armatures, each with only three bones

Octahedron This is the classic display mode for bones. Before the other draw types existed, this is
how bones looked (and it's a very professional looking way to draw them).

B-Bones The B-Bones display mode shows the shape that bones take when segmented (while in
pose mode).

Stick For animators, this mode is perfect, because the bone objects don't hog a bunch of screen
space which is better used for drawing the character. After all, it's the character that is being
animated.

Envelopes The Envelopes display mode shows the influence areas of the selected bones.

Moving the Mesh

Armatures are pretty useless if they don't move the parts of our mesh that makeup our characters.
There are two ways to do this in Blender:

+ Vertex Groups: Vertices are assigned to groups with names. All verts in a group are
effected by a bone with the same name as the vertex group (assuming the armature is
assigned to effect the mesh, by way of parenting or modifier).

- Bone Envelopes: All verts that reside within the limits of a bone's envelope field are
effected by the bone (assuming the armature is assigned to effect the mesh, by way of
parenting or modifier).

Pag. 14

Armatures and Hotkeys

Here are some of the hotkeys for working with bones in edit and pose mode. Some keys may not be
listed, such as CTRL+D, which duplicates a bone in edit mode. It can be assumed that CTRLA+D
duplicates bones since it duplicates other types of objects, and Blender typically uses the same key
for the same functions, even if the objects or modes are different.

Edit Mode
CTRL+N: Recalculates the bone roll angles.

CTRLAP: Makes the selected bone the child of the selected active bone.

W: Opens a menu to either rename bones to the suffix of the opposite side, or to subdivide
the currently selected bones (suffix mirroring works on duplicated bones, which will have a
number suffix after the L/R suffix).

M: Opens a menu of options to mirror the selected bones.
L: Selects all bones connected to the bone currently under the mouse arrow.

ALTH+S: In b-bone display mode, this scales the size of the display thickness. In envelope
display mode, it changes the outer envelope size (the Dist value from the Armature Bones
panel).

Pose Mode
CTRLA+ALT+C: Give a constraint to the active bone, targeting one other selected bone.

CTRLAI: Give an IK Solver constraint to the active selected bone, targeting the other
selected bone.

CTRL+C: Opens a menu to copy attributes of the selected active bone, to all other selected
bones.

M: Opens a menu of options to mirror the selected bones.
L: Selects all bones connected to the bone currently under the mouse arrow.

ALTHS: In b-bone display mode, this scales the size of the display thickness. In envelope
display mode, it changes the outer envelope size (the Dist value from the Armature Bones
panel).

Pag. 15

Constraints and Axis Locks

Introduction To Blender Constraints

Constraints are object features that define special relationships between objects, and are the
standard method for controlling characters among all 3D animation packages that still implement a
more traditional approach to digital character animation. In Blender, constraints can be given to any
type of object or bone object. Constraints are accessed via the object buttons (F7). After you press
the Add Constraint button and select from the menu, a constraint Ul is added to the panel. Your
active object now has this constraint, but you must enter the name of a target object in order to
establish the relationship. In Blender, inverse kinematics are done with the IK constraint. When
using a constraint on a bone object and targeting another bone (instead of an object from outside the
armature), you must first enter the name of the armature object into the OB: (OBject) field. A new
BO: (BOne) field appears, where you can place the name of the target bone.

Bones are given colors for various reasons:

« Yellow: A bone with an IK constraint.

Orange: A bone with an IK constraint but no target.
« Green: A bone with any other kind of constraint.
- Blue: A bone that is animated.

Purple: The Stride Root.

Universal Constraint Features

Add Consteint To Bone: am
= Track To Constond | [~][+] =

Terget |DE:Armature
EQ:armlk
to: [z =el=v[=d e [E[2]E
[Influence 1.000 M | show| Key |

* Locked Track %
Target:

EQ:armid L

To: (R 2 w7 Lock[=F 2]
With the exception of the null constraint, All constraints have the following things in common.

All constraints have an influence value slider, which is linked to an IPO Curve(link). All
constraints have buttons next to this slider that allows you to set key frames into the influence IPO
curve from the constraint UI.

Constraints are added from the Add Constraint menu in the Constraints panel in the object
buttons, F7. When you add a new constraint, it will go to the active object, or the active selected
bone. When a constraint is added, it's name field appears red. This is because it does not yet
function because it does not yet have a target specified. All constraints require a target object; either
a world object, or an armature bone object. But not all constraints work with bone objects, and not
all constraints work with world objects.

Constraints are evaluated in a specific order, and the order can be viewed and changed inside the
Constraints panel. Each Constraint has a pair of arrow buttons in its top right corner, which are
used to move the constraint up or down the constraint stack.

Pag. 16

Copy Location

Acde] Constraint To Bohe: Bohe

~ Copy Locatio [EBASERN [~][v] x
Target

(B~ panec [o[E[0 0]
Copy Location forces the object to have the same location as it's target. When this constraint is used
on a bone and another bone is the target, a new button--labeled Local--appears next to the X Y Z
buttons. Using the local button causes the local translation values of the target to be given to the

constrained object. In rest position, all bones are at the local location of (0,0,0).

"’ View Select Pose |@ v View Select Pose (@

Using global space. This is the default behavior, Using local space, local button activated.
it's what happens when the local button is not
activated.

V View Select Pose |

In these last two images, the constrained bone (shown in green) is actually the child of the root bone
(the bone at the beginning of the chain). This demo shows possible uses for the location constraint
in a rig. Note that the green bone still inherits rotation from the root because the root is it's parent.
This is by design though, the green bone could be the child of any of these bones, or none of them.

V View Select Pose |@

Pag. 17

Copy Rotation

Ade] Constraint To Bohe: Bohe

~ Copy Rotatio [EEASERNN [~][v] x
Target

(B~ renes o [5[0E]

Copy rotation causes one object to match the rotation of a target object. For bones, a local option
will appear, allowing you to use local space. Imagine you have a bone pointing up and a bone
pointing down. If you use local space, each can point different directions, but when the target bone
moves to its left, the effected bone will move it its left.

_ = Miew Select PDSEJ _ = Miew Select F'l:useJI
Using global space Using local space

7 View Select Pose

Here is one good use of the rotation constraint and local space. By setting the influence value to 0.5,
the small bone will rotate half as far as the target. This is useful for character joints.

Pag. 18

Copy Scale

¥ Constraints

Add Constraint To Bone: Bone

= Copy Scale [EGRSEIN [~][v] x
Target

it sl o
Influghce 1.0 s [Show | key |

LV Fanels EE] E = Wiew Select Fose

Copy Scale forces the effected object to have the same size as the target. All bones have a (1,1,1)
size in rest position. We can draw a bone that is 10 million times longer than the bone right next to
it, but in pose mode, they both have a starting size of (1,1,1). You should keep this in mind if you're
going to be using the copy scale constraint.

Track To

¥ Constraints

Acde] Constraint To Bohe: Bohe

v TrackTo [EEASEC [+][v] x
Target

To:[ZEA -] -~ | Up:[Z[¥]E
Influehce 1.0 S| [Show | Key |

L = Panels {}| Q-!:!_

Track To rotates an object to point at a target object. This constraint also forces the object to be
"right-side" up. You can choose the positive direction of any of the three axes to be the up-side.
This constraint shares a close relationship to the IK constraint in some ways. This constraint is very
important in rig design, and you should be sure to read and understand the page on tracking, as it
centers around the use of this, and the IK, constraints.

To: The axis that points to the target object
Up: The axis that points upward

Pag. 19

Locked Track

Add Constraint To Bone: Bone
= Locked Track [Eamstn] [=][+] =
Target

To:[BEAZ] = [- [- | Lock z

[Influence 1.0 s [Show | Key |

L ¥ Panels |@|EH|Q

Locked Track is a difficult constraint to explain, both graphically and verbally. The best real-world
example would have to be a compass. A compass can rotate to point in the general direction of it's
target, but it can't point directly at the target, because it spins like a wheel on an axel. If a compass
is sitting on a table and there is a magnet directly above it, the compass can't point to it. If we move
the magnet more to one side of the compass, it still can't point at the target, but it can point in the
general direction of the target, and still obey it's restrictions of the axel.

When using a Locked Track constraint, you can think of the target object as a magnet, and the
effected object as a compass. One axis will function as the axel about with the object spins, and
another axis will function as the compass needle. Which axis does what is up to you! If you have
trouble understanding the buttons of this constraint, read the tool-tips, they're pretty good. If you
don't know where your object's axes are, turn on the Axis button in the Draw panel, object buttons,
F7. Or, if you're working with bones, turn on the Draw Axes button, Armature panel, editing
buttons, F9.

This constraint was designed to work cooperatively with the Track To constraint. If you set the axes
buttons right for these two constraints, Track To can be used to point the axel at a target object, and
Locked Track can spin the object around that axel to a secondary target.

This is all related to the topic discussed at length in the Tracking section.

To: The axis that points to the target object
Lock: The axis that is locked

Floor

Add Constraint To Bone: Bone

- Fioor [CEREE (][~
Sticky | Target [OB:

Offset: 0.00
hitaw s z e

[Influgnice 1.0 s [5how | Key |

L ¥ Panels |@|=H|@

Pag. 20

The Floor Constraint allows you to use a target object to specify | Animation Tip:
the location of a plane which the affected object cannot pass
through. In other words, it creates a floor! (or a ceiling, or a wall).
This only works with planes of the global coordinate system. This
means that if you rotate the target object, the floor plane will not
be angled.

When you animate foot
placement on the floor plane,
always be sure to use the
option VisualL.oc from the
Insert Key menu.

Sticky: Makes the effected object immoveable when touching the plane (cannot slide around on the
surface of the plane), which is fantastic for making walk and run animations.

Offset: Offset from the position of the object center (can be positive or negative).

Max/Min: Will not pass below (positive axis) or above (negative axis) of target.

Follow Path

Aodd Constraint To Bone: Bone

= Follow Path [Earstn [+][+] =
Target [OB:

CurveFallow | | Offzet: 000

[Influence 1.0 ssss— |Show | key |

L ¥ Panels |@|=H|@

Follow Path places the effected object onto a curve object. Curves have an animated property that
causes objects along the path to move. If you don't want objects on the path to move, you can give
the path a flat speed IPO curve.

Follow Path is another constraint the works well with Locked Track. One example is a flying
camera on a path. To control the camera's roll angle, you can use a Locked Track and a target object
to specify the up direction, as the camera flys along the path.

In order for this constraint to work, you have to have the CurvePath option activated (it's a
property of the curve object). You can find it in the Curve and Surface panel in the editing
buttons, F9.

This constraint does not work well with bones.

CurveFollow: Activate it to orient an axis of the object tangent to the curve.
Offset: Offset from the position corresponding to the time frame.

Fw: Axis to be oriented to the curve
Up: Axis to be upward

Pag. 21

Stretch To

Add Constraint To Bone: Bone

= Stretch To [Eamst [=][+] =
Target

[R]= Rest Length: 0.0000 ¥
[olume “ariation: 1.0000]

vol FEA[]Z[NON] Fian

[Influenice 1.0 s [Shaw | Key |

LV Fanels |@ = | &

Stretch To causes the affected object to scale the Y axis towards a target object. It also has
volumetric features, so the affected object can squash down as the target moves closer, or thin out
as the target moves farther away. Or you can choose not to make use of this volumetric squash-
n'-stretch feature, by pressing the NONE button. This constraint assumes that the Y axis will be the
axis that does the stretching, and doesn't give you the option of using a different one because it
would require too many buttons to do so.

This constraint effects object orientation in the same way that Track To does, except this constraint
bases the orientation of it's poles on the original orientation of the bone! See the page on Tracking
for more info. Locked Track also works with this constraint.

R: Reset rest Length value.
Rest Length: Length of the object at rest position

Volume Variation: Factor between volume variation and stretching

Vol: Wich axis to scale, keeping object's volume.
Plane:

IK Solver

Aodd Constraint To Bone: Bone
- IK Solver (CERSENI] [A][Y]
|

[Fot | Target [OB:

IJse Tip + Chainlen:Qd »

[y T e L —

“Tolerance: 0.001 « |« lerations: 500 -
[Influerice 1.0 s [Shaw | Key |

LV Panels |@ || [

The IK Solver constraint is Blender's implementation of inverse kinematics. You add this constraint
to a bone and then it, and the bones above it, become part of the inverse kinematic solving
algorithm.

Rot: Chain follows rotation of target

Pag. 22

[¢/ = File add Timeline Game Render Help | =[SR:2-Model

(k. effectar

ﬁ:] = Wiew Select ans"e.@ ? Wiew Select Pose |@

Left: Old behavior: wasted bones. Right: New behavior.

Use Tip: This option toggles between the old and new behaviors.
ChainLen: The number of bones above this bone that you want to be effected for IK. The default is
0, which means al/ bones above this bone will be used for IK.

PosW:
RotW:

Tolerance:
Iterations:

Action

Add Constraint To Bone: Bone

= Action [Eorst [+[v) x
Target

AL
Aot

H@mmﬂ, JJ Shu:-w] hey

L <~ Panels |@ | @.!:! [

The Action constraint allows you to map any action to one of the rotation axes of a bone.

More will be added here.

Null

The null constraint doesn't do anything. It is an antiquated feature.

Pag. 23

Preface: Rigging in Blender

This preface contains a lot of good info, so don't skip it! It has two sections: Some Guidelines, and
Some Explanations. If you read about something in one of the rigging tutorials that appears to be
assumed knowledge, then you can probably find more info on it here.

Some Guidelines

This section is intended to establish some common practices that are good to follow when working
with armatures. The main reason being that they will improve the quality of your work and make it
easier for others to understand and work with your rigs.

Mesh to Armature Assignment

In Blender there are two ways to attach a mesh to an armature. The old method is to make the mesh
the child of the armature. Because the parent/child relationship then exists between the objects, we
can transform the armature in any way we like and the character stays together and functional,
unbroken and showing no odd effects. This is not the case if we transform the mesh while the
armature is not in rest position.

With the addition of the modifier stack to Blender, we now have the armature modifier, which
affords us some additional features. You can learn more about the modifier features in the Armature
Modifier documentation
(http://mediawiki.blender.org/index.php/Manual/Partll/Modelling/Modifier/Armatures). There are a
number of reasons why you should use an armature modifier instead of a parenting relationship, but
[won't go into all of that here. Don't use a modifier AND have the mesh as a child of the
armature. Doing so is like having two armature modifiers, and it makes the mesh go all screwy
when the armature is not in rest position.

The best option is to use an armature modifier, and give the mesh location, rotation, and scale
constraints, all targeting the armature. This means that both the mesh and the armature should be in
the same exact location and, as always, they should both have 0 rotation and a scale of [1,1,1]. If
your mesh center is not in the same location as the armature, just snap the cursor to the armature
object, select the mesh, and press the Centre Cursor button in the editing buttons (F9). If your
scaling and rotation are off, then you'll have to clear the rotation and size while in object mode, and
then reapply those transformations while in edit mode.

Using these three constraints simulates a parent/child relationship, but also locks our mesh in place
so we can't move it. As shown on the armature intro page, moving a mesh relative to the armature is
a bad thing. Using these three constraints prevents that completely, and from a rig design point of
view, this is a wonderful thing! This elimanates yet one more way that someone could break the
character.

The COG and the Armature Center
Basically every character has three bones in common: COG, body, and hip.
COG

COG stands for Center Of Gravity. All things, everywhere in existence, have a COG. This is why
CG characters should have a bone to represent the COG. When tossed into the air, the COG is the

Pag. 24

point about which something rotates. The COG bone is the top most level of the rig hierarchy.
Every bone in the rig is somewhere in the tree underneath the COG. This means that transforming
the COG transforms the entire character. This is the bone we animate if our character is going to be
falling large distances, flying through the air, performing aerial acrobatics, or the like.

Body

Basically all characters have a body. It's the part of the character that the limbs are attached to. By
having a body bone, we can move the character's body while the feet or hands remain stationary,
because of IK effectors. Generally speaking, all characters should have a top-most hierarchy like
this:

- COG

o body Note:

- hip N

.- leglK.l To be clear, hip is a child of body‘.
.« legIK.r Body and all IK effectors are siblings.
« handIK.1 Exceptions to this structure can

handIK.r certainly be used, but you should only
- any other IK effectors make them for a specific purpose.

Hip

The hip bone should be the parent of both upperleg bones. In humanoid characters, there is one hip
bone for both legs, and effectively one hip bone for each arm (but we call them shoulders, or
clavicles). It is foreseeable that you may choose to make an alien character that has two hip bones,
just as humans have two clavical bones.

The bigger point though, is that this bone moves a part of the body that one or more limbs are
attached to, and still allows the IK effectors to remain stationary. For some more insite into the
usage of such a bone, see the Bend-O-Matic Spine tutorial (pag. 73).

The Armature Center

This creates a bit of a redundancy issue. All bones of the armature are children of the armature
object, which has a center of it's own. Transforming the armature center has the same effect that
transforming the COG has, so why bother creating a COG bone?

The reason is that animated bones can be included in actions. Armature object animations cannot.
So if you want to make an action of your character jumping and doing an aerial flip, you can't! You
can animate it, but it has to remain as two separate animations, one would be the character jumping
and landing, and the other would be the armature center's animation of moving through the air and
rotating.

So what do we do? We use a COG bone. If a situation arises where you need to use the armature
center instead, you still can, but you might have to use a little sleight-of-hand to make it work. If
you animate with a COG bone, it will probably be moving away from the armature center. This
means that if your character walks 10 units forward, rotating the armature is going to spin the
character around a point that is 10 units away!

Plan Ahead

Especially when building very large rigs, it will benefit you to think ahead and note which parts of
the armature will be the non-deforming bones. This way, you can deactivate Deform for the

Pag. 25

appropriate bones early in the building process, so that all duplicate bones will inherit this setting.
This applies to the W key subdivide command as well.

When In Doubt, Snap To Grid!

« You should not place bones haphazardly.
Designing a rig requires care and precision.

The armatures in these tutorials are drawn snapped to the grid, or to the cursor. Not all the joints of
your characters need (or should) be placed exactly on the grid, but using the grid will help you place
matching points when the need arises. Basically, the point is this: don't be careless with the
placement of your bones. If it looks like two or more points share an exact location in the images
you see here, then they do.

Layer Usage

The bones of an armature typically fall into one of three categories:

1. Manipulable rig elements: Bones meant for transformation by the animator.
Deform bones: Bones set with Deform active, these move the mesh and often don't need to
be dealt with directly by the animator.

3. Non-manipulable rig elements: Elements of a rig that work as part of a larger system to
cause an effect, but don't need to be dealt with by the animator.

When an animator works with a character, he wants to see two things:

1. The character, in one form or another.
2. The character's controls.

We don't need to have a plethora of bones on the screen during animation if only two or three drive
the whole system. By using bone layers, we can organize bones into groups however we see fit, and
only display the section of the armature we need to work with at any given time.

You should try to assign priorities to your groups, and then place them accordingly. For example,
you will probably want to put all manipulable rig elements into layer one (the farthest left layer
button), since these are the bones that the animator is going to be working with. If the animator is
going to need multiple sets of manipulable rig elements, then place these into the far left layer
buttons so they have the appearance of higher status.

The tutorials in this chapter will assume you can manage bone layers with this concept in mind, as
you follow along, or whenever you feel it's a good time to do some organization. The tutorial
images will be meant to present rigs in a way that either helps you understand them better, tries to
show all the components, or just makes them look cool.

The IK and Constraint Hotkeys

When building an entire character rig, the IK hotkey CTRL+I comes in very handy for assigning
IK constraints. Remember to make use of it always, because it's much faster and easier than the
alternative.

The same should be said for the constraint hotkey, CTRL+ALT+C.

More goes here

the dreaded bone roll angle
- bones internal vs objects external

Pag. 26

+ never parent to the IK effector
Some Explanations

If there some areas of rigging that still perplex you, then give these topics a good read. Hopefully
you'll find the answers you're looking for here.

Understanding Hierarchies

Character rigging is completely based on objects hierarchies. If you don't understand how 3D object
hierarchies work, then you are going to have a lot of trouble learning how to rig characters.

A Hierarchy is a way of arranging persons or things. In 3D computer graphics, all objects are
children of the CG world. The CG world has a center and coordinate system, just like all of the
objects in it.

= View Select Pose @

Here we see two bones. The bigger bone is the parent, and the smaller one is the child, and the grid
lines around them show the coordinate system of the parent bone.

Let me elaborate. Every object has a coordinate system. You can think of this as being like that
object's own special little world (and believe me, it is special!). In our example, the smaller bone is
the child of the bigger bone--the parent. This means that the child bone exists inside the parent
bone's special world.

« parent
o child

= View Select Pose @

A child object is like a person standing on earth. Not only is earth spinning around its axis, but it's
also orbiting the sun. As you sit reading this though, you probably don't perceive any of that. That's

Pag. 27

why people use to think the world is both flat, and the center of the galaxy (because at the center, it
would be stationary, while everything else appears to be moving).

Our child bone is naive like this. In this image, the parent bone has rotated, but the child doesn't
know a thing about it. As far as he's concerned, he's still standing in the same place, facing the same
direction.

. v View Select Pose [@F,
In this image, the parent is back to its original orientation, but now it has been scaled on the Y axis.
Does the child know about this? Nope. The world he's living in may appear to be warped to you and
I, but as far as he's concerned, nothing has changed.

|32 = View Select Pose [@F,
So what happens if the child runs around in a circle? Nothing special. Just like the world he's living
in, it looks warped to us, but looks normal to him!

Pag. 28

For fun, lets see his world both rotated and warped:

You have to keep this in mind if you are going to be parenting other bones to stretchable bones.
Terminology Overview

note for editing: this section could go into a wiki glossary.

- floating bone: Any disconnected bone, but usually a single bone placed visibly outside the
inner areas of the armature.

- root bone: The first bone of a chain.

- tip bone: The last bone of a chain.
chain: A series of connected bones.

« parent: An object that has one or more children objects.

« child: An object that has a parent object.
sibling: An object that shares a parent object with other children objects (like a
sister/brother).
IK effector: A bone that moves around in space to define the target location of an IK chain.

The Design-and-Test Two-Step

Character rigs have functional aspects and structural aspects. You design the structures in edit
mode, and you implement the functions in pose mode. As you are building a character rig, both of
these aspects should be cycled and tested so that each area of the character can be assessed at a local
level.

For example, build and test one finger, then do the other fingers and test them together, then the
hand, then the arm, then the shoulder... Build and test the foot, then the leg. Build and test the spine,
then the hips, then connect the legs to the hips and test the functioning of the two together, seeing
how one effects the other, or both effect each other.

This process involves constant changing between edit and pose mode. You can even include
animation as a testing procedure. You can move, add, or remove bones from the armature while it
still has animation. You can add, remove, or otherwise edit constraints between bones that may or
may not have animation.

The idea is that you learn to manage each area of the armature individually, so that you are not
overwhelmed with too many objects and connections later on. This will also help you find and
eliminate small problems before you build more systems on top of them.

The tutorials here will assume that you can make use of this work concept at any point, as needed.

More goes here

- stretching vs reaching

weight painting == vertex groups
- mechanical vs organics
+ building armatures on planes

Pag. 29

Some Beginner Rigs

This page will assume that you're still new to working with armatures and snapping operations, so
these tutorials will be more specific about how to do each step. All of the following tutorials will
assume that you know when to use operations like snapping.

The Squash n' Stretch Ball

‘V Yiew Select 7

This is a great first-time rig. We're going to use the prinicle of squash n' stretch to make this
animatable bouncing ball.

] Wiew &

] Wiew S L

A

Start off with an empty scene and set the cursor to the origin, CTRL+C. Add a sphere. I'm going to
use an icosphere because I like 'em. Set smooth on the sphere so it looks nice and not all faceted.
Exit edit mode, clear the rotation with ALT+R, and then reenter edit mode. Place the cursor 1 unit
above the origin and snap it to the grid with SHIFT+S. Press the . (dot) key to use the cursor as the
pivot point. Now scale the sphere down to 0.5, holding the CTRL key. Exit edit mode.

| Miew SlJ

Place the cursor back to the origin and add an armature. Turn on X-Ray in the Armature panel. In
object mode, clear the rotation of the armature. Enter edit mode and place the tip of the bone as
shown.

Pag. 30

Snap the cursor to the tip point and add a new bone. Select the new bone and scale it down to 0.3,
while holding CTRL.

Name the big bone, "stetcho", and the little bone, "target".

Change the display mode to Envelope. Select the bone and scale it up, as shown. Select target and
turn Deform off.

Exit edit mode and select the mesh. Give it an Armature Modifier(link), and type "Armature" (no
quotes) into the Ob: field. Give the mesh three constraints: Location, Rotation, and Scale. Put
"Armature" (no quotes) into the Ob: field for each constraint.

Now for one last step. Select the armature, enter pose mode, select stretcho, and give it a Stretch To
constraint. Put "Armature" in the OB: field, and put "target" in the BO: field.

To make the rig easy to work with, you should put it back into octahedron display mode.
Some Extra Info

The reason why you want to use Stretch To for this character is that it automates the squashing and
stretching for you. If you animated the rotating and scaling by hand, then you would have to create
the squash n' stretch (expanding and thinning) effect manually (very inefficient).

You can probably animate the armature object to make the ball bounce around. If you want, you
could instead use a COG bone, where both bones would be the children. See the Rigging preface
(pag. 26) for info on COG bones.

The Dancing Palm Tree

i
Reset the cursor with CTRLAC, add an armature, and clear it's rotation in object mode. In edit

mode, make the bone 2 units tall, standing parallel with the Z axis. Use SHIFT+S where needed.
Select the bone and subdivide it (W) two times. Enable X-Axis Mirror, select the tip point at the
end of the chain and mirror-extrude it with SHIFT+E, then disable X-Axis Mirror. Extrude twice
more with E to make the leafy-looking chains (these are just for show; after all, it is a palm tree!).

Snap the cursor to the tip again, add a new bone, and name it "target". Snap the cursor to the root
point at the bottom (beginning of the chain), add a new bone, and name it "warped". Add another
new bone, and move the tip down 0.2 units (holding CTRL), just so we can see it. Name this bone
"widget".

Pag. 31

Select widget, and then SHIFT select warped, and press CTRLAP, and choose "Keep Offset" from
the Make Parent menu. Select target and then SHIFT select widget, and use CTRL+P again, and
choose the same option. You've now got a hierarchy like this:

- warped
o widget
target
+ other bones...

In pose mode, select target and then select the last of the vertical bones in the chain, press CTRLA+I
(and then confirm) to IK constrain the chain to target.

In pose mode, select warped and press S to scale, followed by SHIFT+Z to scale on X and Y only,
and take it down to 0.5. Place warped and target into layer 3, and place widget into layer 2. You

Pag. 32

should only have layers 1 and 2 visible. Now rotate widget and watch it dance!
Some Extra Info

You could also do something like this with a Propagating Rotations Spine Rig (pag. 71), but you
would have to have a rotating parent bone at the root of the spine to make the base rotate side to
side.

Expanding Punching Glove Arm

= Wiew Delect Ohbject |T¢Dbject Mode |ﬂrj‘? View Select Armature ‘E‘

Add your armature and--as always--clear its rotation while in object mode. In side view, draw some
bones as shown. Be precise with your bone placements, especially for this rig.

= Miew Select Armature E‘

Place the cursor back at the origin (CTRL+C), select all the bones, set the cursor as the pivot point
(.), press CTRL+M to mirror the bones, and select the "Z Global" option from the pop-up menu.

Sorry, I gotta shift my focus to the other pages right now, but I will be back!

Pag. 33

Understanding Target Tracking

In many rigs, it's necessary to have one bone target another, free-floating bone. This relationship is
the critical component that makes the last three spine rigs work, and is the foundation for the arm
and both leg rigs shown here. Suffice it to say, this section is important, even if it is a little boring.

In this section we're going to learn about the behavioral difference of the Track To and IK
constraints. Both of these cause the assigned bone to point to a target, but as that target moves the
bone farther and farther away from it's original position, the bone's rotation around it's local Y axis
takes on a life of it's own. We need to understand how these two constraints behave so we can try to
tame them, and bend them to our will!

E:; = View Select P.U&E_I@Pnse hiode =5 ﬂj-l"?-f'%fiew Select Pose I@Puse hlode &

Lt

At first glance, Track To and IK seem to do the same thing

Track To Constraint

The Track To constraint does two things:

- It directs your object to point at a target with one of it's axes
- It also forces the bone to stay 'right-side up'.

Pag. 34

The direction that is considered 'up' is the global +Z direction.

If the target crosses directly above or below the effected bone, it must flip over because--as dictated
by the design of this constraint--the bone must always be right-side up. The side that is the 'right'
side however, is your choice, but it has to be one of the three positive axes of the effected object.
See Track To constraint at page 21.

IK Constraint

The IK constraint can be used on a single bone to do the same thing as the track to constraint, but
the IK constraint has a different behavior. It doesn't base part of it's orientation on the global Z axis.
Instead, it keeps the rotations based on the orientation of it's rest position, relative to its parent. This
is critical to the proper functioning of an IK chain. Imagine the implications if you use IK on the
spine of your character, a spine with bones pointing straight up!. If IK worked like Track To does,

Pag. 35

your character's torso would be spinning in circles all the time. You could never have a character
reach toward the sky or the ground, you couldn't allow your bipeds to stand up straight, arms at the
sides. Character animation would be virtually impossible.

Making the Comparison

Track To IK Solver

In these images, the pits in the spheres represent rotational poles. These are the locations where all
possible Y axis rotations come to a single point. Track To has two poles, and the IK solver only has
one.

Keep in mind that not only are the location and number of the poles different, but they are also
based on different coordinate systems.

[f :| ¥ File Add Timeline Game Render Help | =[SR:2-Model |X |

'V View Select Pose | (@ Foset V View Select Pose | FPoset

[¢/ = File add Timelne Game Render Help | =[SR2-Model ||

‘V View Select Pose |@Poset] 3 ¢ v view Select Pose |@ Poset

Pag. 36

¥ View Select -_E:q_s_a:__:J@F'nse hode

(4 | = File Add Timeline Game Render Help | =[SR:2-Model | % |

.‘Jﬂ } o '-‘"h":f.'rew-.: Seiié.c"[:? Jf!ij'se:'

(@ FPose

iﬂ #E:-.'.V, View Select ﬁusa--:l@lé'nse r;

Pag. 37

Arm Rig Design

= Wiew Select FPose |@F‘Dse Mode _=J [i_-] £ #[23| [Global =| mj:HE‘

When designing a rig for a character's arm, it's imporant to consider the differences between
computer bones and real bones. In the human forearm, there are two bones: the ulna and the radius.
The wrist can rotate 180°, and it does this by moving the end of one around the other. With CG
bones however, none of this matters. What matters is that the skin twists and the CG bones have to
create that twist. The upperarm can also rotate--though not quite 180°--and it does this by rotating at
the shoulder socket. But this also doesn't matter.

What this means is that the CG bones of both the upperarm and the forearm need to create a
twisting motion. We can do this easily with a segmented b-bone, or if you want more control over
the amount of twist at each section of the arm, you can use multiple bones.

Besides the issue of twisting, there is also the issues of elbow direction control, wrist rotation, and
IK/FK blending. We will attempt to address all of these needs with the following tutorial about arm
rigs.

Pag. 38

Lets Build It!

In top or side view, draw your bones as shown. Notice the slight bend. This is extremely important.
If you don't build it this way, Blender won't know which way the arm is supposed to bend.

1. Add a new bone at the root position that points exactly to armIK, then size it down 50%.

2. Add a new bone at the end of the chain. This will be the IK effector.

3. Now is a good time to do the naming.

4. Then go into pose mode and IK constrain forearm to armIK, and set the ChainLen value to
2.

Elbow Direction Control

Ever seen someone do a dance called "the funky chicken"? In case you haven't, place your hands
near your arm pits and flap your arms as if they were wings. When you do this, your hands are--for
the most part--motionless. But your elbows are moving up and down. When you use an IK solver, it
controls the placement of the character's hand, but it doesn't give you any control over the direction
the character's elbow is pointing.

One solution might be to rotate the root bone of the chain. This can work fine for character posing,
but it doesn't work for animation. Between keyframes, you are trusting Blender to choose the
correct way to interpolate the rotation of the root bone, but the math behind IK chains and rotated
root bones is not predictable. In short, it will lead to spastic, uncontrolable arm rotations. This is
why we created an arm bone. We can control it's direction and roll, so it provides a good basis upon
which to build an IK chain.

Pag. 39

Finding Some Direction

For this next step, you have to choose which system you think will be the best to animate with.

e fm-m..__

Arrly

1
L\\ |III I I
=T
\'\ -E.”fl Ly
S
"'._:'.I

LW
ba]

= Wiew Select Pose |@Fo = Wiew Select Pose |@Po

Option 1: Using IK tracking, and a 1D rotation Option 2: Using Track To tracking, and Locked
control bone Track to give the up vector

But How Do I Choose!?

Basicly, the first option is nicer to work with because you don't have more Note:
bones floating around the character. The second method is more precise ’

though, because the input that determines the elbow direction is not based | Please see the page on
on the rotation of another bone in the arm, but is instead a direct child of | Tracking (pag. 43) to be

the COG. sure you understand
If you're not sure, here's some advice: what is happening here.
Option 1: Use this for most of your characters. It's compact, easier to
use, and can handle most all situations just fine. Animation Tip:
Option 2: Lets say you have a character that is going to be In a situation like this,

armwrestling, and then doing push-ups. In a scenario like this, you | you can snap the cursor
might want to use this design. I would also say that you might want to the armUV bone, and
to use FK to animate the armwrestling and then blend to IK for the | rotate the armIK bone
push-ups, but it might be easier to use IK for the whole thing. This
rig lends itself to a situation like armwrestling because the elbow is
planted on a surface. This design allows you to set the target for

around with the cursor
set as the pivot point.

the elbow on the table, so you know the elbow won't slide around Th1s will allow you to

on the table. But, because you're using IK, you'll have to use more casily keyﬁarrp the IK
keyframes on the hand to keep the elbow from going through the effector traveling through
table, or lifting away from it. a perfect arc.

Building Option 1

In option 1, your hierarchy should be like this:

Pag. 40

- armlK

« arm
o armUV
upperarm
« forearm

The key to making option 1 usable, is to lock all the axes of armUV, except for the rotation axis that
aligns with the Y axis of arm. You can orient armUV anyway you like, but ideally, one of it's axes
aligns with the Y axis of the bone arm.

Building Option 2
In option 2, your hierarchy should be like this:
« armlK
« armUV
« arm
o upperarm
forearm

kv view Select Object

After you decide which technique you want to use to control elbow direction, you can then build
more bones on top of the existing bones. If you decide to use FK and IK in the same rig, it is
desireable to have one bone for the upperarm, and one bone for the forearm. To make the arm bones
twist though, we my want to have many more bones for each part of the arm.

Shown on the right are two instances of the same armature, but in two different draw modes. In b-
bones display mode, we see that the longer interior bones are segmented.

IK/FK Blending

(TO BE WRITTEN)

Pag. 41

Hand Rig Design

Hand rigs are mostly just a matter of choosing what method gives you the most amount of control,
while still being easy to work with during animation. The rig on this page is taken from the
Elephants Dream characters, and is a very good rig for most all puposes.

(TO BE WRITTEN)

Leg Rigs

Leg rigs are very similiar to arm rigs, and in some cases, they are identical. Legs and arms are both
limbs, and they both interact with the world around the character, but legs spend a lot more time
doing this. As a result, legs are animated using IK almost all of the time. If you have a character--
let's say a dancer, and she's going to have lots of arm movements but little interaction with the
environment, then FK is the way to go. But if your character is going to walk down a staircase with
her hand on the railing, or climb a rock wall, or lift heavy objects, then you want to use IK instead.

Another factor is that legs have feet (usually), and arms have hands (usually). These are also rather
similiar to each other, but still different enough that they can change the way the rig of the leg or
arm must be designed.

We're going to look at two rigs in this section. Hopefully building these will teach you enough that
you can modify them--or create completely different rigs--to suit your characters' needs.

Pag. 42

The Funky Chicken

This is the rig you want to use for characters that have bird-like legs and feet. Examples might be a
dinosaur, an ostrich, a kangaroo, or a giant mech sporting the reverse-joint leg design. In the real
world (the world outside of a computer), legs like this are an evolutionary change where the foot is
elongated and the animal walks on it's toes. In the CG world, we have to treat the ankle as being no
different than a knee: it's part of the leg. This means that--for us--the "foot" is where the limb
touches the ground.

Let's Build It

¥ View T Miew

Start by drawing the three bones of the leg. Draw these to fit your model.

Snap the cursor to the root bone's root point, then add a new bone. Select the tip and root of the
chain--as shown--and then snap the cursor to the selection. Then snap the tip of the new bone to the
cursor--as shown.

Now is a good time to do some naming. The new bone can be called "legUV". UV is our
abbreviation for the term "Up Vector", which means up direction. This bone is a rig element, so turn
nn

Deform off. Name the other bones "upperleg", "lowerleg", and "foot" (remember, this bone is part
of the leg rig, we just call it 'foot' because real birds have foot bones here).

Pag. 43

biody

i N

T View Selecl,

= Aiew Selen:ll

Duplicate legUV, snap the cursor to the selection, box-deselect the root point only, and then snap
the selection to the cursor. If you do this right, you should have a new bone called legUV.001 that is
half as long as leg. Name this new bone "leg".

Snap the cursor to the tip of the chain and add a new bone. This is going to be our IK effector, so
name it "legIK".

To show you where these bones fit in the hierarchy of the entire character, I've also added hip,
body, and COG bones. Remember, the location of these bones depends on the design of your
character. Make your hierarchy like this:

- COG
o legIK Note:
o body Be sure to notice that legIK
hip and body are siblings on the
o leg same level
o legUV
upperleg
« cetc...

And of course we need constraints to make it do stuff! IK constrain leg to legIK, and set ChainLen
to 1. Also IK constrain foot to legIK, but set ChainLen to 2.

Locking Things Up

Final steps: Lock the appropriate axes of the bones, and organize your layers.

Pag. 44

Usage

When animating with this rig, you have three primary inputs:

« Foot placement with legIK.
+ Knee direction control with legUV.
+ Kbnee flexion and extension by rotating upperleg.

L |~ v e punn [, | ([] = e tamer s [| 0 e e o [

The Not-So-Funky Non-Chicken

page under construction

Lpperleq rig

[owerlen rig

Now we'll look at a rig for human legs.

Pag. 45

Draw the bones of the leg as shown, and name them "upperleg rig", "lowerleg rig", "foot", and
"toes".

= Miew Select F'I:useJ

You'll need a foot rig, two of which can be found on the Foot Rigs page (pag. 64). We won't see the
foot rig in this tutorial, but you will learn what parts are constrained to a part of the foot rig.

The concept behind this rig is that we can use a simple leg rig that is easy to control and animate, to
control a second set of leg bones which does the mesh deforming.

Lppetleq

Remember your hierarchy should be like this (right image above):

. leg
o legUV

upperleg rig
. etc

IK constrain leg to leglK and set ChainLen: to 1.

IK constrain lowerleg to legIK, and set ChainLen: to 2.
IK constrain foot to toe rig and set ChainLen: to 1.

IK constrain toe to toelK and set ChainLen: to 1.

b s

Now add a new bone about 0.4 units above the leg root point, and draw some new bones as shown.

Pag. 46

These will be "leg null", "upperleg", and "lowerleg". Set upperleg's Segm value to about 10 (you
can use however many segments you like). Also set its blend-in and blend-out values to 0. Note
that lowerleg is half as long as lowerleg rig. This is because these bones are overlapping and we
don't want to make them the same length if they don't need to be.

Hﬂﬂ!_" Wi SEE‘

A

Now is a good time to switch to b-bone mode and use ALT+S to resize the b-bones so you can
work with them more easily. You don't want overlapping bones to have the same draw size.

IK constrain upperleg to lowerleg rig. Track To constrain lowerleg to foot. Then give lowerleg a
Locked Track constraint, use Z for the To: option, use Y for the Lock: option, and use legUV as
the target.

Pag. 47

Foot Rig Design

= Miew Select F'l:useJ = Miew Select F'l:useJ

Rig 1 Rig 2

Human-like feet are a tough thing to animate because they can have as many as four different
rotation points, they must interact with the ground surface, and on top of all that, the foot bones
need to move in a way that doesn't cause the character's knee to experience irregular changes in
speed, or even stutter back and forth.

In this section we'll look at two different designs to automate the roll of the foot as it goes from heel
to ball to toe. We'll also talk about how this effects the movement of the leg and knee, and what
more we might be able to do to make the animator's job easier.

Building Rig 1

|
|| troller
L]

|

Frerllk

foot

= View Select FPose |@Pnse hode _#] @_v] (]]H m

The rotations from the ball of the foot and the heel are both driven by IK, and we take advantage of
DoF (degrees of freedom) to stop them from rotating down into the floor.

Draw out a three bone chain like this, and name the bones accordingly.

tmotik

heel

v view Select Amature [AEdtMode | [| [¢

Pag. 48

.:;H neslkg o

foot

&
= Wiew SE|ECL

Draw and name these as well.

We're gonna need some IK effectors, so add some bones, place, and name them, like those shown.
Be sure that heel is pointing at heellK and footIK is pointing at lifterIK.

o liftgrlK

hragllk

v view Select Amature | AEditMode | [68 [y

So now we've got all the bones we need, all we have left to do is edit the hierarchy, add some
constraints, and set some rotation limits.

IK constrain heel to heellK and set ChainLen to 1. Then do the same with lifter and lifterIK. The
lowerleg rig bone of your Leg Rig (pag. 57) should be IK'ed to legIK with a ChainLen of 2. Also
IK constrain foot to footIK and IK constrain toes to toesIK (both using a ChainLen value of 1).

In the Armature Bones panel, lock Y and Z and enable X axis limits for both heel and footIK. Set
both bones to have the X limit values: Min:0.0, Max:80.0
Setup your hierarchy like this:

« foot
o heel
footIK
o leglK
o roller
heellK
lifterIK

Locking Things Up

Final steps: Lock the appropriate axes of the bones, and organize your layers.

Pag. 49

Building Rig 2

= MWiew Select Pose]@F‘Dse hode _#“ﬁ;u

This rig makes use of the IK Solver's target rotation following, which does almost all of the work
for us.

Draw some bones like these here crazy thing deals.

raller

hegllly o toRsigT:

& hegltip heel p}J,

tippytoes

[# | = view Select Amature | & EditM,

Pag. 50

Spine Rig Design

Jﬁ__:l = Wiew Select F'Ds]@Pnse Mode _=l J'ﬁ'_vl [Q j]Hl @|G|Ub3| _=l H-H—N—H—H—Il JEJ

For the purpose of discussing character rigging, we can consider any lengthy chain a spine. This
could be the spine of a human, the neck of a giraffe, the tentacle of a giant squid, the trunk of an
elephant, the tail of a T-Rex, the spine of a chinese dragon, or even the long serpentine tongue of a
certain giant black alien symbiote!

We'll look at a number of different designs and I'll cover how to build them, their uses, and their
individual pros and cons.

1. The B-Bone Spine

The Propagating Rotations Spine
The Bend-O-Matic Spine

The Bones-on-Curve Spine

The Linear Curve Tracking Spine
Making A Spine Twist

ARG

Pag. 51

The B-Bone Spine

= Miew Select Pnse.]@F‘use kdode _il l_-ﬁ_:”ﬂ_—.@ Global i_L

This is probably the easiest way to make something curvy and animated. B-Bones have to be
perfectly in line with both the parent and child bones in order to be straight in rest position.

v Wiew Select An, v View Select Pa,

Segmented B-Bones are best used for cartoon-like characters, because b-bones change length as
bend angle increases.

'T Yiew Select PDSEI@F’DSE Mode ;L

You should never change the scale length of a bent, segmented b-bone. If you do, it will sheer the
bone segments and thus sheer the area of the mesh those deforms. Of course, you can do this if
that's the effect you want.

Pag. 52

"V Wiew Select F'I:useJ

B-bones are very useful in rigs to do things such as twisting. If you set the blend-in and blend-out
values to 0, it will cause the bone to remain completely straight, but still twist.

_ = Wiew Select Pose |@F‘Dse Mode | |$:lv View Select Pose |@ Pose Mode

As you can see in the image on the left, the last segment is never quite as far rotated as the child
bone. For this reason, it is sometimes a good idea to have an extra bone after the segmented bone.

Pag. 53

Ht o] v view Select F | |Hf ¢ ¥ View Select F

In the last image of this sequence, you see a small green bone. It's copying the local rotation of it's
parent, which is why the b-bone is arched nicely in that image and not in the second image. The
arms and neck are children of the green bone. If you parent them to the b-bone, they won't have the
orientation of the last segment of the b-bone, and will be as they are in the second image.

This Rig in Review
Now lets consider the benefits and drawbacks of this design.

The Pros

+ Way easy to use.
« Very useful for twisty areas, like human forearms and upperarms.

The Cons

+ B-Bones change length when bending and are therefore, not a good choice for realistic
character spines.

+ Input is limited to two rotations and so the possible curvatures are limited.

« Movement is unnatural because the segments stretch to reach around the rotation points. It's
more like a slinky than a spine.

Pag. 54

The Propagating Rotations Spine

[#] v view select Pose |@Posemode) @ [Q) | [F | v view selct ||+ view Select Pose [@Pose Mg
Here's another really simple design. All you have to do is draw your spine--it can be any shape or
size you want--and then give every bone in the chain a copy rotation constraint, using local space,
targeting any bone that you want to use as the bending control object.

Remember that CTRLAC can be used to copy the constraint from the active bone to all other
selected bones.

[#] = view select Pase [@Posemode o @ [Q) [3 = view [| v view Select Pose [@F

Pag. 55

This Rig in Review
Now lets consider the benefits and drawbacks of this design.

The Pros

Very quick and easy to make.
Gives very nice arches and bends.
Induces twisting, but doing so effects the bent shape.

The Cons

Inflexible, the shapes it makes are all you get.
The system is based on FK, so control is very limited.

Pag. 56

The Bend-O-Matic Spine

[¢ = wiew Selest Pose EGFDEB Mads

zg3zaza:

s £ CECiz

reference image

"Bend-O-Matic Spine" is just a term given by this author to one of his rig designs. This design
should work for most athletic human-type characters, but it's probably not quite adequate for some
other types of characters, such as a contortionist. This rig should also work good for making a
dancer, because this rig has two controls for hip movement that cause the spine to bend, and the
upper body to stay relatively still. The control that causes the spine to arch also induces twist as
well.

Keep in mind that this particular example is designed specificly for use as a human-like spine, but
you could produce many different types of variations on this rig for lots of different uses.

Pag. 57

Let's Build It

Start out with a single bone placed near the center of the fist disc and extrending vertically to the
disc between L1 and L2. You want the bone to be perfectly vertical. From this bone, we will create
all the deform bones for this rig. Subdivide it twice. Name the bones spinel through spine4, starting
at the base. Duplicate spine3 and spine4, and move them up to the end of the chain, and name them
spine5 and spine6. Make spine5 a child of spine4, connected (for now). Those are all the deform
bones for this rig. Add a new bone at the center of spine6, and name it torso. Now select all of the
spine bones, duplicate them, and translate them on the Z axis to the end of the chain. These don't
need good names, but if you want to name them anyway, I would suggest using spinelK1 through
spinelK6. Make each one of these a child of torso.

IK constrain each spine bone to it's spinelK duplicate. Change the ChainLen value to 1 after each
constraint is added. Now rotate torso in pose mode and watch her go!

Pag. 58

"But my spine is curved!"

The spine is probably useable as it is now, but if you want to give it more of a curve like a human
spine, then we need to move the bones. We could move the points of the spine to make it match the
arch in the image, but if we do that, our bones won't point straight up, and that means they won't be
pointing at our IK targets. We could try moving the targets, but then the arch backwards or forwards
will change.

Instead, disconnect all of the bones. Select spine2 and it's target bone, and move them both until
spine2 sits about where the center of the disc between L4 and L5 should be. You shouldn't have to
move the bone up or down very much to make this adjustment, and the less you do, the better. Now
do this with the rest of the bones and IK target pairs, for each corresponding disc of the spine. You
should also move the torso bone forward 0.1 or 0.2 Blender units. Doing this changes the shape of
the arch, so you might want to do a test:

o Rotate the torso bone forward in pose mode.

o Create a duplicate of the armature.

o Change the position of the torso bone in edit mode for this new armature.

o Reenter pose mode to see the difference between the two arches.

The more that you offset the bones from the originally vertical column, the more effect it will have
on the arch that the spine forms when it bends, but arranging the joints this way makes it easier to
do even more tweaking of the arch. Here's another experiment to try:

+ Rotate the torso bone forward in pose mode.

+ Select any of the target bones and translate them on local Y.

« Ifyou decide you want to keep some changes made to the target locations, then make the
same changes to edit mode and clear the locations in pose mode.

Let's Make it Do the Twist

I've been told that twisting of the human torso occurs near the middle of the spine (T11 and T12)
and not at the bottom (L1 through L5, or the lumbar region). Whether or not you want your rig to be
as anatomically correct as possible is completely up to you. You can make the spine twist at any

Pag. 59

bone you choose. You can also use the torso bone as the target of the rotation constraints. For more
in-depth info, let's see the Making A Spine Twist.

This page discusses ways to make any of the four chain spine rigs twistable. Not all of the options
here work for each rig, and results may vary for those that are compitable. The propagating
rotations spine is different from the latter three because it doesn't use IK tracking. Because of this
difference, option 1 doesn't apply for this rig. These options apply for the bend-o-matic rig, but keep
in mind that it will behave differently if you offset the bones as described in the latter part of the
tutorial.

2. The Propagating Rotations Spine
3. The Bend-O-Matic Spine

4 . The Bones-on-Curve Spine

5 . The Linear Curve Tracking Spine

Option 1

Give all the bones of the spine--except for the root--a copy rotation constraint using local space, and
target some bone from outside the spine (a bone you would create as a rig element to control the
twist). It would also be good to turn off X and Z in the rotation constraint of each bone, because we
only use the Y axis for twisting, but this is not really necessary. I would suggest making the twist
control bone a child of the head bone (at the tip end of the chain), and of course you should lock the
axes of the control bone so it can only rotate on it's Y axis.

This option is great because you can make the spine twist around many, many times. The reason is
because each bone is the child of the one before it. If the first bone rotates 10 degrees, the next bone
rotates 10 degrees on top of the previous bone, making for a total of 20 degrees of rotation. If you
have a ton of bones in the spine, this method might create too much twist to control easily. If you
want the spine to twist slower, then lower the influence value of all the copy rotation constraints to
0.5 or even 0.25, depending on the number of bones in the spine. However, if you do that, your
maximum amount of twist will go down. If you want, you can instead hold the Shift key while
rotating the control bone to make it rotate slower.

Option 2

This option is a considerable amount of additional work, because it involves writing a script. If you
have a very long spine and you're going to animate it being tied into and/or out of knots, then you
might want to consider this option.

You would need give each bone of the spine a child with an orientation matching it's parent. You
would then give the last child bone--at the tip end of the chain, not the root end--a Locked Track
constraint. You would also need a new floating bone to act as the target.

Extreme amounts of bending (like tying the spine into a knot) will cause the end of your chain to
spin. The only way to make the end of the spine orient itself indipendantly is to use a Locked Track
constraint. This will force the end bone to align with a target and not spin out of control. You might
need to have this kind of control if you want the spine to interact with it's environment, like picking
up objects.

The issue then is making all of the other children bones rotate a portion of what this bone rotates. At
the moment, copy rotation constraints can't copy the rotation of a locked track constrained bone, so
the only option we have left is to write a python script to do the job. If you decide to take on this
task, you'll probably need to use the bone's matrix to get it's rotation result, and you'll need to run
the script with a script link.

Pag. 60

What you decide to do should be your own decision, based on your own experiments, and what you

think works best for your character.

Adding the Hips

‘V' Yiew Zelect Pose

What we have made so far is a good rig on it's own, but we can do a little more to make it even
better. We can add extra pivot points to make for easy and quick-to-animate hip movements. These
extra pivot points go in as additional hierarchy levels between the spine and the body bone.

Duplicate torso, resize to 50%, and name "bender". Duplicate bender and move it straight up
(constrained to Z) about 1.5 units and name it something like "benderIK". IK constrain bender to
benderIK, and set ChainLen to 1. Add a new bone, "hip", and place it over the leg ball sockets in
the image. Add and place a new bone, "shaker", half way between hip and torso. Setup the

hierarchy like so:

+ body
o benderIK
o shaker
hip
bender
o torso
spinel
o spine2
spine3
e spine4

o spine5

Note:

To be clear,
benderIK and
shaker are children
ofbody, and bender
and spinel are
children of hip.

Pag. 61

Locking Things Up

Final steps: Lock the appropriate axes of the bones, and organize your layers.

This Rig in Review
Now lets consider the benefits and drawbacks of this design.

The Pros

Creates great hip and torso rotation that is very quick and easy to use.

Induces twisting, not just bending.

Allows for additional arch shapes during animation by translating or scaling the torso bone.
Allows for some hip movement while the upper body stays relatively motionless.

The Cons

Slightly lengthy setup period.
Works well for bending, but can't do wavy movements.

Pag. 62

The Bones-on-Curve Spine

‘V Yiew Select Pose |@F‘Dse hode _f‘l -ﬁ' =]]ﬂ #. 4| Global #1

This is one of the most flexible spine rig designs. You could use this rig to animate a snake, a
chinese dragon, a belly dancer, any type of tentacle, etc, etc, etc.

= \iew Select Pose | Pose Mode |

There are two kinds of behavior that we can hope for when using curves in our rigs:

« The rig stretches and squashes to the full length of the curve.
« The rig always stays the same length, no matter how long or short the curve may become.

We will build a rig that does the latter. To create a rig more like the former, you simply enable the
CurveStretch option for the curve object, and location constrain the bones to the appropriate
targets.

Let's Build It

The easy way to build this rig is to use a straight curve and a straight line of bones. If we did that,
your character--whatever that may be--would need to have a straight spine. Chances are it doesn't
though, so we'll build this rig to fit a character mesh that is already curved.

Pag. 63

This rig requires the use of objects outside the armature to make it work. This first subsection is for
the curve, mesh, and empties we need to setup before we can draw the bones of the armature.

Meshes and Curves and Empties Oh My!

v Wiew Select Mesh IAEditMDdE _*H.'.ﬁ___L

17 Flane
¥ View Select Mesh | &EditMade ¢ [P =]i

Add a mesh object. You can make it a plane if you want, but it really doesn't matter what mesh
primitive you start with. Name it SpineMesh and clear it's rotation. Delete all but one of the verts
and snap that remaining vert to the world origin. Extrude out 8 units on the Y axis, then subdivide
the edge three times.

[# | = view select Ohjer,

Now we need a curve. It would be best and easiest to start with a straight curve and build the spine
straight, but you can build it to fit a curvy character mesh. For this demo, we'll use a reference
image. Add a NURBS Curve (Add->Curve->NURBS Curve), clear it's rotation, and name it
SpineCurve. In the Curve and Surface panel (F9), activate the 3D button, and in the Curve Tools
panel, press the Endpoint U button. Now place your points--and add more as needed--to make your
curve fit the spine shape you have. Make sure you don't use too many points.

Give each point of the curve a hook (CTRL+H). You might want to change the display mode of the
new hook empties to "Plain Axes" (F9).

Add an empty. As with the hooks we added to the curve, you might want to change the display
mode to "Plain Axes". You'll want this one to be just big enough that it can still be seen when
covered by a bone, so scale it down a bit. You can resize these later if the bones need to be bigger
than you figured. Duplicate and place one empty for each vert of the SpineMesh object, matching

Pag. 64

the vert locations exactly.

[# | = wview Select Objec, [| = view Select Object [% Object Mod:

In edit mode, make each vert of SpineMesh a vertex parent of the corresponding empty (select the
vert, then select the empty with CTRL+RMB, then press CTRL+P to make vertex parent).

Select the SpineMesh object and give it a curve deform modifier
(http://mediawiki.blender.org/index.php/Manual/PartlI/Modelling/Modifier/Curve deform), using
the SpineCurve object as the deformer. The mesh object will have its base at one end of the curve,
and you want that end to be the base of the spine, so you might have to switch the direction of the
curve (edit mode, W). After that you'll probably need to scale the mesh bigger or smaller until it is
the appropriate length. Notice in the image that the last empty is near the base of the skull.

Enter the Skeleton

[# o v view Select Pase
Now we can add the armature object (remember to clear its rotation first). Extrude and snap the
points of the bones to the empties on the curve.

IK constrain each bone to the empty at its tip. You can do this quickly by selecting the empty first

Pag. 65

and then SHIFT+RMB selecting the bone, and then pressing CTRL+I. Make sure you change the
ChainLen value to 1 after each IK assignment. Also, give the first bone of the chain a location
constraint targeting the first of the larger empty hook objects. The first of the smaller empties serves
no purpose, so you can delete it.

Optionally, you can place floating bones at each hook object, and then make each hook a child of
the corresponding floating bone. This makes it possible to include spine animations in armature
actions and to perform mirrored or copied posing, but it also causes a cycle in Blender's dependancy
graph which results in slightly delayed responce time from the armature spine. When clearing the
location of these floating bones, you must clear twice.

Locking Things Up

Final steps: Lock the appropriate axes of the bones, and organize your layers.

This Rig in Review
Now lets consider the benefits and drawbacks of this design.

The Pros

« Can be used for practically any type of movement; bendy, wavy, twisty, etc.
Makes nice flowing curvy spines easy to animate.
« The design can be expanded to twist anyway you like.

The Cons

-‘$r Wiewy Select F'I:ns

The design requires the use of outside objects, and can have refresh issues.

Because the curve is not straight between bone joints, the mesh is made shorter than the
chain as the curve becomes more and more curvy. This can be seen in rigs with many bones.
This limits the maximum number of spine bones the rig can have.

Pag. 66

The Linear Curve Tracking Spine

.-u

{13 Armature

= View Select Pose L@Pnse hade =J JQ _JH| I@|anal |

The spheres in this image are bones with a sphere mesh object given as the custom draw type.

This rig is a great alternative to the bones-on-curve system.

Let's Build It

I'm sure you could build this rig in a curved shape to match a curved model, but you're much, much
better off saving yourself the trouble and making the model straight to begin with.

Add an armature and clear it's rotation. Make a bone 8 units long, lying on the Y axis. All of the
deform bones will come from this bone. Subdivide it four times.

Select all of these bones, duplicate them, and move them 5 units up on the Z axis. These duplicates
are rig elements, not deform bones. If you want to give names, name the deform bones spinel -
spinel6, and name the rig elements spinelK1 - spinelK16. I will use these names here, but it only
matters that you understand which bones I'm refering to.

Pag. 67

[# | = wview Select Amature | SEdithode =] [@ | [Q

Add a new bone at the root of the lower chain. Name this bone CP1 (for Control Point). Create
duplicates and place them as shown. Name these CP2 - CP6. Make each of the shown selected
bones the child of the closest CP bone. Also make spinel the child of CP1.

]ﬁ = Wiew Select Pose]@F’DSE Mode il Li_l iﬂ_.l.‘-_'.lL

IK constrain each spine bone to it's spinelK duplicate. Change the IK constraint ChainLen value to
1 for each spine bone.

Give each of the shown selected bones Stretch To constraints, targeting the closest CP bone that
they point to (e.g. spinelK1 targets CP3).

[# | = view select amature | #Edithode = | [@ | [Q

In edit mode, move all of the shown selected bones down and over, as shown.

Pag. 68

Locking Things Up

Final steps: Lock the appropriate axes of the bones, and organize your layers.

This Rig in Review
Now lets consider the benefits and drawbacks of this design.

The Pros

« Very flexible.
« Allows for as many or as few spine bones as you need.
« Works without the use of outside objects, unlike bones on a curve.

The Cons

« Control inputs are tied to a specific section of the spine, so the spine is not automatically
made smooth.

Spine Rigs vs Curve Deform

{13 Curwve
[#] v view select Object Itnhiecfl

For some characters, it might be more practical to use a Curve Deform Modifier
(http://mediawiki.blender.org/index.php/Manual/Partll/Modelling/Modifier/Curve deform) instead
of a spine rig. There are advantages and disadvantages to both spines and curves, and you should
understand these so you can make an informed decision over which one to use for your characters.

The first issue with curve deform is that it shares the same Z-axis flipping issue as the Track To

Pag. 69

constraint. The difference is that it uses the curve's local Z-axis as the up/down direction.
Curves have to do this because they have to have a way to determine orientation at any
given point on the curve.

Curves don't provide a way to easily parent objects on the curve and keep them at a constant
distance from one end of the curve. This means adding appendages along the curve would
be difficult to manage, at best.

Using a curve will give nicer deformations, especially in sharp corners. The blended weight
groups that armatures use compress the mesh around the joint. This is caused by the way
that vertex locations are calculated when the influence of one or more bones are blended.

| = wew Seiect Fose | @Foie Meoe | = view Seiwct Otject [Copect Micae

Pag. 70

Face Rig Design

= Wiew Select Pose [@F‘nse Mode

i

|$4‘? Yiew Select Pose [@Pe

I originally did not propose to cover face rigs for the BSoD, so I will finish this page after BSoD is

finished.

Widgets and the Wizzbangs

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Dodads and the Dohickies

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

This Rig In Review

Now lets consider the benefits and drawbacks of this design.

The Pros
« It rocks.
. Ttrocks.
« It rocks.
The Cons
« It sucks.
« It sucks.
« It sucks.

Pag. 71

Stride!!

I originally did not propose to cover the stride bone for the BSoD, so I will finish this page after
BSoD is finished.

Widgets and the Wizzbangs

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

Dodads and the Dohickies

Lorem ipsum dolor sit amet, consectetuer adipiscing elit.

This Rig In Review

Now lets consider the benefits and drawbacks of this design.

The Pros

It rocks.
It rocks.
It rocks.

The Cons

It sucks.
It sucks.
It sucks.

the Rig and the Mesh

Rig! Mesh!
Rig Mesh!
RigMesh!

Yall!

JointDeformers.blend is in zip file of this offline version.

Pag. 72

	BSoD/Introduction to Rigging
by Robert Christian (wavez)
	The Objective
	Introduction to Character Rig Design
	The Early Days
	How to Make A Move

	A Skeleton Was Born
	Back to Kinematics
	Summary

	The Tools
	the Armature and its Features
	the Armature and its Work Modes
	Armature Edit Mode
	Armature Object Mode
	Armature Pose Mode

	Building an Armature/Rig: Construction Techniques
	Placing a New Bone
	Resizing a Bone
	Pointing One Bone at Another Bone

	Armatures and Buttons
	The Armature Panel
	The Armature Bones Panel
	The Armature Display Modes

	Moving the Mesh
	Armatures and Hotkeys
	Edit Mode
	Pose Mode

	Constraints and Axis Locks
	Introduction To Blender Constraints
	Universal Constraint Features
	Copy Location
	Copy Rotation
	Copy Scale
	Track To
	Locked Track
	Floor
	Follow Path
	Stretch To
	IK Solver
	Action
	Null

	Preface: Rigging in Blender
	Some Guidelines
	Mesh to Armature Assignment
	The COG and the Armature Center
	COG
	Body
	Hip
	The Armature Center

	Plan Ahead
	When In Doubt, Snap To Grid!
	Layer Usage
	The IK and Constraint Hotkeys
	More goes here

	Some Explanations
	Understanding Hierarchies
	Terminology Overview
	The Design-and-Test Two-Step

	More goes here

	Some Beginner Rigs
	The Squash n' Stretch Ball
	Some Extra Info

	The Dancing Palm Tree
	Some Extra Info

	Expanding Punching Glove Arm

	Understanding Target Tracking
	Track To Constraint
	IK Constraint
	Making the Comparison

	Arm Rig Design
	Lets Build It!
	Elbow Direction Control
	Finding Some Direction
	But How Do I Choose!?
	Building Option 1
	Building Option 2

	IK/FK Blending

	Hand Rig Design
	Leg Rigs
	The Funky Chicken
	Let's Build It
	Locking Things Up
	Usage
	The Not-So-Funky Non-Chicken

	Foot Rig Design
	Building Rig 1
	Locking Things Up
	Building Rig 2

	Spine Rig Design
	The B-Bone Spine
	This Rig in Review
	The Pros
	The Cons

	The Propagating Rotations Spine
	This Rig in Review
	The Pros
	The Cons

	The Bend-O-Matic Spine
	Let's Build It
	"But my spine is curved!"
	Let's Make it Do the Twist
	Option 1
	Option 2
	Adding the Hips
	Locking Things Up

	This Rig in Review
	The Pros
	The Cons

	The Bones-on-Curve Spine
	Let's Build It
	Meshes and Curves and Empties Oh My!
	Enter the Skeleton

	Locking Things Up

	This Rig in Review
	The Pros
	The Cons

	The Linear Curve Tracking Spine
	Let's Build It
	Locking Things Up

	This Rig in Review
	The Pros
	The Cons
	Spine Rigs vs Curve Deform

	Face Rig Design
	Widgets and the Wizzbangs
	Dodads and the Dohickies

	This Rig In Review
	The Pros
	The Cons

	Stride!!
	Widgets and the Wizzbangs
	Dodads and the Dohickies

	This Rig In Review
	The Pros
	The Cons

	the Rig and the Mesh

